Part Number Hot Search : 
24C32AP 03515 43025 03515 05E41 MOC2R60 OP11307 FN3229
Product Description
Full Text Search
 

To Download IRF7490PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 95284
IRF7490PBF
HEXFET(R) Power MOSFET
Applications High frequency DC-DC converters l Lead-Free
l
VDSS
100V
RDS(on) max
39mW@VGS=10V
Qg
37nC
Benefits l Low Gate-to-Drain Charge to Reduce Switching Losses l Fully Characterized Capacitance Including Effective COSS to Simplify Design, (See App. Note AN1001) l Fully Characterized Avalanche Voltage and Current
S S S G
1
8 7
A A D D D D
2
3
6
4
5
Top View
SO-8
Absolute Maximum Ratings
Symbol
VDS VGS ID @ TA = 25C ID @ TA = 70C IDM PD @TA = 25C PD @TA = 70C TJ TSTG
Parameter
Drain-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Maximum Power Dissipation Maximum Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds
Max.
100 20 5.4 4.3 43 2.5 1.6 20 -55 to + 150 300 (1.6mm from case )
Units
V
A W mW/C C
Thermal Resistance
Symbol
RJL RJA
Parameter
Junction-to-Drain Lead Junction-to-Ambient
Typ.
--- ---
Max.
20 50
Units
C/W
Notes through are on page 9
www.irf.com
1
09/15/04
IRF7490PBF
Static @ TJ = 25C (unless otherwise specified)
Parameter Drain-to-Source Breakdown Voltage V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage V(BR)DSS IDSS IGSS Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. 100 --- --- 2.0 --- --- --- --- Typ. --- 0.11 33 --- --- --- --- --- Max. Units Conditions --- V VGS = 0V, ID = 250A --- V/C Reference to 25C, ID = 1mA 39 m VGS = 10V, ID = 3.2A 4.0 V VDS = VGS, ID = 250A 20 VDS = 100V, VGS = 0V A 250 VDS = 80V, VGS = 0V, TJ = 125C 200 VGS = 20V nA -200 VGS = -20V
Dynamic @ TJ = 25C (unless otherwise specified)
gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. 8.0 --- --- --- --- --- --- --- --- --- --- --- --- --- Typ. --- 37 8.0 10 13 4.2 51 11 1720 220 25 1650 130 250 Max. Units Conditions --- S VDS = 50V, ID = 3.2A 56 ID = 3.2A nC VDS = 50V VGS = 10V, --- VDD = 100V --- ID = 3.2A ns --- RG = 9.1 --- VGS = 10V --- VGS = 0V --- VDS = 25V --- pF = 1.0MHz --- VGS = 0V, VDS = 1.0V, = 1.0MHz --- VGS = 0V, VDS = 80V, = 1.0MHz --- VGS = 0V, VDS = 0V to 80V
Avalanche Characteristics
Parameter
EAS IAR Single Pulse Avalanche Energy Avalanche Current
Typ.
--- ---
Max.
91 3.2
Units
mJ A
Diode Characteristics
IS
ISM
VSD trr Qrr
Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge
Min. Typ. Max. Units --- --- --- --- --- --- --- --- 67 220 2.3 A 43 1.3 100 330 V ns nC
Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25C, IS = 3.2A, VGS = 0V TJ = 25C, IF = 3.2A di/dt = 100A/s
D
S
2
www.irf.com
IRF7490PBF
100
TOP
VGS
100
ID, Drain-to-Source Current (A)
10
ID, Drain-to-Source Current (A)
1
15V 10V 7.0V 5.0V 4.5V 4.3V 4.0V BOTTOM 3.7V
10
VGS 15V 10V 7.0V 5.0V 4.5V 4.3V 4.0V BOTTOM 3.7V
TOP
0.1
3.7V
0.01
1
3.7V
0.001 0.1 1
20s PULSE WIDTH Tj = 25C
10 100
0.1 0.1 1
20s PULSE WIDTH Tj = 150C
10 100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100.00
2.5
T J = 150C
RDS(on) , Drain-to-Source On Resistance
ID = 5.4A VGS = 10V
2.0
ID, Drain-to-Source Current ()
10.00
1.00
(Normalized)
1.5
T J = 25C
0.10
1.0
0.01 3.0 4.0
VDS = 50V 20s PULSE WIDTH
5.0 6.0
0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160
VGS , Gate-to-Source Voltage (V)
T J , Junction Temperature (C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
www.irf.com
3
IRF7490PBF
100000
20
VGS , Gate-to-Source Voltage (V)
VGS = 0V, f = 1 MHZ Ciss = C + Cgd, Cds SHORTED gs Crss = C gd Coss = Cds + Cgd
ID = 3.2A 16 VDS= 80V VDS= 50V VDS= 20V
10000
C, Capacitance (pF)
12
Ciss
1000
Coss Crss
8
100
4
0
10 1 10 100
0
10
20
30
40
50
60
VDS, Drain-to-Source Voltage (V)
Q G Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
100.0
1000 OPERATION IN THIS AREA LIMITED BY RDS(on)
T J = 150C 10.0
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
10 100sec 1 Tc = 25C Tj = 150C Single Pulse 1 10 1msec 10msec
1.0 T J = 25C VGS = 0V 0.1 0.2 0.4 0.6 0.8 1.0 1.2 VSD, Source-toDrain Voltage (V)
0.1
100
1000
VDS , Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRF7490PBF
6
VDS
5
ID , Drain Current (A)
RD
VGS RG 10V
Pulse Width 1 s Duty Factor 0.1 %
D.U.T.
+
4 3 2 1 0 25 50 75 100 125 150 T C , Case Temperature (C)
-V DD
Fig 10a. Switching Time Test Circuit
VDS 90%
Fig 9. Maximum Drain Current Vs. Ambient Temperature
10% VGS
td(on) tr t d(off) tf
Fig 10b. Switching Time Waveforms
100
D = 0.50
Thermal Response ( Z thJC )
10
0.20 0.10 0.05 0.02 0.01
1
0.1
SINGLE PULSE ( THERMAL RESPONSE )
0.01 1E-005 0.0001 0.001 0.01 0.1 1 10 100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
IRF7490PBF
RDS (on) , Drain-to-Source On Resistance ( )
0.045
R DS(on) , Drain-to -Source On Resistance ( )
0.06
0.040 VGS = 10V
0.05
0.035
0.04
ID = 3.2A
0.030 0 10 20 30 40 50 ID , Drain Current (A)
0.03 4.0 8.0 12.0 16.0
VGS, Gate -to -Source Voltage (V)
Fig 12. On-Resistance Vs. Drain Current
Current Regulator Same Type as D.U.T.
Fig 13. On-Resistance Vs. Gate Voltage
50K 12V .2F .3F
VGS
QGS
D.U.T. + V - DS
QG QGD
240
VGS
3mA
EAS, Single Pulse Avalanche Energy (mJ)
VG
Charge
IG ID
200
Current Sampling Resistors
ID 1.4A 2.6A BOTTOM 3.2A
TOP
160
Fig 14a&b. Basic Gate Charge Test Circuit and Waveform
120
80
15V
40
V(BR)DSS tp
VDS L
DRIVER
0
RG
20V
D.U.T
IAS
+ V - DD
25
A
50
75
100
125
150
I AS
tp
0.01
Starting TJ , Junction Temperature (C)
Fig 15a&b. Unclamped Inductive Test circuit and Waveforms
Fig 15c. Maximum Avalanche Energy Vs. Drain Current
6
www.irf.com
IRF7490PBF
D.U.T
Driver Gate Drive
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
+
RG
* * * * dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test
V DD
VDD
+ -
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple 5%
ISD
* VGS = 5V for Logic Level Devices Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET(R) Power MOSFETs
Id Vds Vgs
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
Fig 17. Gate Charge Waveform
www.irf.com
7
IRF7490PBF
SO-8 Package Outline
D A 5 B
DIM A b INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMET ERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00
A1 .0040
8 6 E 1
7
6
5 H 0.25 [.010] A
c D E e e1 H K L y
2
3
4
.050 BAS IC .025 BAS IC .2284 .0099 .016 0 .2440 .0196 .050 8
1.27 BAS IC 0.635 BAS IC 5.80 0.25 0.40 0 6.20 0.50 1.27 8
6X
e
e1 A C 0.10 [.004] 8X b 0.25 [.010] A1 CAB y
K x 45
8X L 7
8X c
NOT ES : 1. DIMENS IONING & T OLE RANCING PER AS ME Y14.5M-1994. 2. CONT ROLLING DIMENS ION: MILLIMET ER 3. DIMENS IONS ARE S HOWN IN MILLIMET E RS [INCHES ]. 4. OUT LINE CONFORMS T O JEDEC OUT LINE MS -012AA. 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS . MOLD PROT RUS IONS NOT T O EXCEED 0.15 [.006]. 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS . MOLD PROT RUS IONS NOT T O EXCEED 0.25 [.010]. 7 DIMENS ION IS T HE LENGT H OF LEAD FOR S OLDERING T O A S UBS T RAT E. 3X 1.27 [.050] 6.46 [.255]
FOOT PRINT 8X 0.72 [.028]
8X 1.78 [.070]
SO-8 Part Marking
EXAMPLE: T HIS IS AN IRF 7101 (MOS FET ) DAT E CODE (YWW) P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) Y = LAS T DIGIT OF T HE YEAR WW = WEEK A = ASS EMBLY SIT E CODE LOT CODE PART NUMBER
INTERNAT IONAL RECT IFIER LOGO
XXXX F7101
8
www.irf.com
IRF7490PBF
SO-8 Tape and Reel
TERMINAL NUMBER 1
12.3 ( .484 ) 11.7 ( .461 )
8.1 ( .318 ) 7.9 ( .312 )
FEED DIRECTION
NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00 (12.992) MAX.
14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Notes:
Repetitive rating; pulse width limited by
max. junction temperature.
When mounted on 1 inch square copper board Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS
Starting TJ = 25C, L = 17mH
RG = 25, IAS = 3.2A.
Pulse width 300s; duty cycle 2%.
Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.09/04
www.irf.com
9


▲Up To Search▲   

 
Price & Availability of IRF7490PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X